Reflectivity, Ice Scattering, and Lightning Characteristics of Hurricane Eyewalls and Rainbands. Part I: Quantitative Description

نویسندگان

  • DANIEL J. CECIL
  • EDWARD J. ZIPSER
  • STEPHEN W. NESBITT
چکیده

Covering December 1997 through December 1998, 261 overpasses of 45 hurricanes by the Tropical Rainfall Measuring Mission (TRMM) satellite are used to document the observed radar reflectivity values, passive microwave ice scattering magnitudes, and total lightning (cloud to ground plus in cloud). These parameters are interpreted as describing convective vigor or intensity, with greater reflectivities (particularly aloft), greater ice scattering (lower 85and 37-GHz brightness temperatures), and increased lightning frequency indicating more intense convection. For each parameter, the full distribution of values observed during the TRMM satellite’s first year is presented for specific regions. Properties of three regions of the hurricane (eyewall, inner rainband, and outer rainband) are treated separately and compared to other tropical oceanic and tropical continental precipitation systems. Reflectivity profiles and ice scattering signatures are found to be fairly similar for both hurricane and nonhurricane tropical oceanic precipitation systems, although the hurricane inner rainband region yields the weakest of these convective signatures. When normalized by the area experiencing significant convection, the outer rainband region produces more lightning than the rest of the hurricane or nonhurricane tropical oceanic systems. As a whole, the tropical oceanic precipitation systems (both hurricane and nonhurricane) are dominated by stratiform rain and relatively weak convection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflectivity, Ice Scattering, and Lightning Characteristics of Hurricane Eyewalls and Rainbands. Part II: Intercomparison of Observations

Part I of this two-part paper treats Tropical Rainfall Measuring Mission (TRMM) radar, passive microwave, and lightning observations in hurricanes individually. This paper (Part II) examines relationships between these parameters (and implications of the relationships). Quantitative relationships between lightning occurrence and 85-GHz brightness temperature, 37-GHz brightness temperature, and ...

متن کامل

Convective Structure of Hurricanes as Revealed by Lightning Locations

Cloud-to-ground lightning flash locations were examined for nine Atlantic basin hurricanes using data from the National Lightning Detection Network. A common radial distribution in ground flash density was evident: a weak maximum in the eyewall region, a clear minimum 80–100 km outside the eyewall, and a strong maximum in the vicinity of outer rainbands (210–290-km radius). These results are co...

متن کامل

On the relationships between lightning frequency and thundercloud parameters of regional precipitation systems

[1] Seasonal variations on lightning activity of precipitation systems over south China and Taiwan before and after the onset of Mei‐Yu have been observed by the lightning imager sensor (LIS) on board the Tropical Rainfall Measuring Mission (TRMM) satellite. Lightning storms before Mei‐Yu onset show higher probability of lightning, higher flash rate, and larger radar reflectivity in the mixed‐p...

متن کامل

REGIONAL VARIABILITY IN TROPICAL CONVECTION: OBSERVATIONS FROM TRMM By

Observation of the vertical profile of precipitation over the global tropics is a key objective of the Tropical Rainfall Measuring Mission (TRMM) because this information is central to obtaining vertical profiles of latent heating. The present study combines both TRMM Precipitation Radar (PR) and Lightning Imaging Sensor (LIS) data to examine “wet-season” vertical structures of tropical precipi...

متن کامل

Empirical conversion of the vertical profile of reflectivity from Kuband to Sband frequency

[1] This paper presents an empirical method for converting reflectivity from Ku-band (13.8GHz) to S-band (2.8GHz) for several hydrometeor species, which facilitates the incorporation of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measurements into quantitative precipitation estimation (QPE) products from the U.S. Next-Generation Radar (NEXRAD). The development of empiric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002